::: 您目前的位置: 首頁 / 研究計畫

 

 

 

 

 

計畫名稱: 開發環境中奈米物質量測及特性分析技術
計畫編號: EPA-96-U1U1-02-104
出版年月: 2009/11
委辦機關: 環保署
計畫主持人: 蔡春進教授
共同計畫主持人: 劉紹臣, 周崇光, 許世傑
執行機構: 國立交通大學環境工程研究所
中文摘要:
行政院環境保護署委託計畫成果報告
計畫名稱:開發環境中奈米物質量測及特性分析技術
執行單位:交通大學環境工程研究所
計畫主持人:蔡春進教授
摘要
本研究利用最先進的奈米微粒採樣、量測及分析技術進行了兩次道路旁、三次雪山隧道、一粉體廠及一次新竹十八尖山的微粒採樣,採集的微粒包括PM10、PM2.5、PM0.1-0.056及PM0.056,除了分析微粒的濃度分佈,本研究亦分析微粒的化學成分包括:有機碳、無機碳、水溶性離子及元素(含金屬)。PM10及PM2.5是使用2台Dichotomous雙通道虛擬採樣器;PM0.1-0.056及PM0.056是使用3台MOUDIs來進行採樣。此外,我們也使用SMPS量測微粒的即時濃度分佈並與MOUDI的採樣結果做比較,預期能找出微粒的有效密度,進而使SMPS可當作微粒重量濃度的即時監測儀器。碳分析我們是使用發展的Thermo-Optical Reflection分析技術;元素分析是使用傳統的微波消化ICP-MS方法;離子分析是使用離子層析儀(IC)。學府路道路旁以MOUDI採集奈米微粒(PM0.1),得到的濃度(1.58及1.66mg/m3)與Cass et al. (2000)在加州7個都會區做的實驗所得到的結果相近。他們量測的微粒粒徑為0.056-0.1 m,濃度為0.55-1.16 g/m3。本研究在雪山隧道做微粒的採樣及即時量測,結果顯示隧道中微粒的濃度隨進入隧道的距離增加而增加,在靠近宜蘭出口的第三中繼站,奈米微粒的濃度在白天時高達20-30 g/m3,凌晨時也還有5-10 g/m3,顯示雪隧在夜晚時奈米微粒的背景濃度還是相當高。十八尖山的採樣結果發現,此處的奈米微粒PM10及PM2.5的濃度並不比學府路做出的低,且微粒的濃度明顯隨新竹測站變化,顯示十八尖山並不是能正確代表奈米微粒自然源的採樣地點。微粒成分分析的結果顯示學府路及十八尖山微粒的成分以離子為主,雪山隧道則是有機碳為主。奈米微粒重量濃度比對方面,在學府路及十八尖山,SMPS與MOUDI的結果相近,相差在35 %以內。在雪山隧道SMPS與MOUDI相差約50 %。在高雄台灣石原公司二氧化鈦粉體廠的量測結果顯示,廠內及廠外的奈米微粒濃度相近,約 8 g/m3,廠內元素分析結果顯示奈米微粒中的金屬成份含量不多,約僅佔15%,大部分為碳及鹽類,顯示此廠的奈米二氧化鈦逸散的情形並不明顯,奈米微粒大部分是從廠外傳輸至廠內的。
本研究嘗試重新設計MOUDI舊有的衝擊板為可放置浸漬矽油濾紙的設計,以毛細效應來收集微粒並降低微粒彈跳的問題,預期可降低微粒彈跳的問題。知識缺口部份,本研究已經回顧並寫成報告的主題包括:發展評估奈米物質對水生物影響的方法、環境奈米物質測定方法、大氣奈米微粒的物理化學特性、水中及土壤中奈米物質分散及量測、奈米科技的生命週期評估、奈米製程的防護儀器及設備、工業周界奈米物質及人造奈米微粒逸散測定方法、環保署超級測站、奈米微粒之皮膚穿透及相關法規監測研究計畫回顧與建議及美國環保署奈米科技白皮書,並已於5/13及5/20舉辦專家研習會,廣納更多專家的建議及彙整相關知識,做出最後的具體建議,並將文章投稿至環境友善奈米科技知識庫。

英文摘要:
Ambient particles (PM10-2.5、PM2.5、PM0.18-0.1、PM0.1-0.056及PM0.056) were studied at the road side of Poai Street and in the Eighteen-Peak mountain in Hsinchu, in the Syueshan high-way tunnel in Taipei, in the Experimental Forest of NTU in Nan-Tou and a TiO2 powder manufacturing factory in Kaohsiung, Taiwan, using a TSI model 3936 SMPS, two MOUDIs (MSP Model 110) and two Dichots (Thermo Scientific SA 241) in parallel. As well as particle size distribution, chemical compositions were analyzed by ICP-MS for elements, ion chromatograph for ions and Thermo-Optical Reflection (TOR) method for OC and EC. The road side sampling showed similar results with those of Cass et al. (2000) who measured the mass concentration of nanoparticles at seven urban areas in California. The average concentration of two road side sampling was 1.5 mg/m3. The high-way tunnel sampling and real-time measurement showed the concentration of nanoparticles at day time was 20-40 mg/m3 while it decreased to 5-15 mg/m3 at night time. Nanoparticle concentration of the NTU experimental forest was as low as 0.99 mg/m3 (MOUDI). Meanwhile from the real-time concentration distribution (SMPS) of nanoparticles, it is concluded that the NTU Experimental Forest is a specific biogenetic source of nanoparticles. Similar and low concentrations of nanoparticle were observed at the ambient and workplace of the TiO2 powder factory, indicating that nanoparticle emission was not severe. Chemical analysis showed ions were the most abundant species at the road side and the eighteen-peak mountain. The first two high-way tunnel samplings (before 2008/11/15) showed that OC was the most abundant component while the third and fourth tunnel samplings showed the most abundant species was EC. This was mainly due to the admission of bus driving in the tunnel from Nov. 15, 2008 and an substantial increase of diesel vehicles after that. Ions were the main component of nanoparticles in the forest, on the other hand the proportion of OC was only 11.3 %. This value indicates the OC might have been underestimated. This study also reviewed the latest papers about ten nanotechnolgy knowledge gaps, including the measurement methods of environmental nanoparticles, the protection instrument and equipment of manufactured nanomaterials, and developing the assessment methods of the toxicity of manufactured nanomaterials in water, etc. On the ten topics, ten seminars were held and the comments from the attending experts were collected. We summaried the suggestions in this report both on the technical and policy aspects of the nanotechnology knowledge gaps. It is hoped this report is useful to the agencies concerned with nanotechnogy EHS.
計畫報告連結:
資料庫分類: 環保署、感測、生命週期評估、生態、職業暴露評估、體外實驗、法規與監督、風險評估方法、風險管理、吸入、碳、金屬、多重奈米物質、有機/聚合物、多重系統、報告、消費者、一般居民、工業/研究作業員、技術研究者、一般民眾、公共政策、工程/人造
下載檔案:
文章分享到
分享文章 到 facebook 分享文章 到 Plurk 分享文章 到 to Twitter

 

網頁更新日期:2016/06/15