::: 您目前的位置: 首頁 / 研究計畫

 

 

 

 

 

計畫名稱: 奈米技術實驗室的奈米微粒暴露評估及控制研究
計畫編號: IOSH98-H324
出版年月: 2010/02
委辦機關: 勞安所
計畫主持人: 張振平
共同計畫主持人:
執行機構: 行政院勞工委員會勞工安全衛生研究所
中文摘要:
計畫參考國內外的文獻,完成了”奈米技術實驗室的奈米微粒暴露控制手冊”草案,手冊共分成七個章節,內容包括簡介、奈米物質環境、安全與健康(Environment Safety and Health, ES&H)危害評估及作業人員管理、奈米物質暴露評估方法、奈米物質暴露控制方法、火災及爆炸預防、奈米物質及奈米廢棄物的管理、奈米物質溢出的管理,可供專家學者作進一步的討論。現場評估發現工廠及實驗室大都未針對奈米物質作適當的暴露評估與控制,主要的原因是本國尚未針對相關業者進行奈米作業人員之暴露控制教育訓練,將來可以加強奈米技術實驗室及工廠的奈米暴露控制手冊的宣導及教育訓練工作。

計劃已在2個奈米物質相關實驗室及4個相關作業環境進行多次微粒濃度量測,其中在實驗室中因奈米物質的使用量不高再加上有良好的微粒控制系統(通風櫃及試驗環境為負壓狀態),故在實驗室所量測到的奈米微粒質量濃度很低,幾乎與背景值類似。在4個作業環境中以造船廠所量測到的奈米微粒濃度為最高(最高值為 33.7μg/m3),其次為合成橡膠製造廠(最高值為12.3μg/m3 ),氧化樹酯封裝材料製造廠及碳酸鈣製造廠的奈米微粒重量濃度很低,最高值分別為3.82μg/m3及1.85μg/m3。各工廠的逸散微粒質量濃度以可呼吸性濃度為主,以氧化樹酯封裝材料製造廠濃度為最高,造船廠電焊區次之,其次為合成橡膠製造廠及碳酸鈣製造廠。

在實驗室的粉體逸散研究發現奈米粉體經過分散後大多以微米(1~2 μm)的質量中位粒徑(MMAD)存在,分散後大部分的質量皆集中於可呼吸性微粒部分,而奈米部分的所佔質量很小。其中以奈米二氧化鈦的質量中間氣動直徑最小(1105 nm),奈米氧化鋅(1344 nm)、奈米氧化鋁(1322 nm)與碳煙粉體(1329 nm)次之,奈米黏土則為最大(3179 nm)。根據單位粉體重微小粉末分散器(small scale powder disperser, SSPD)所分散微粒總數目濃度排序,在氣動微粒分徑器(Aerodynamic Particle Sizer, APS)的部分,奈米二氧化鈦>奈米氧化鋅>奈米氧化鋁>碳煙粉體>奈米二氧化矽(HDK, N20)>奈米黏土>奈米二氧化矽(Degussa),在微粒電移動度掃瞄分徑器(Scanning Mobility Particle Sizer, SMPS)的部分則為奈米氧化鋁>奈米二氧化鈦>碳煙粉體>奈米二氧化矽(HDK, N20)>奈米氧化鋅>奈米二氧化矽(Degussa)>奈米黏土。奈米二氧化鈦及奈米氧化鋁具有良好的分散性,而奈米黏土的分散性則相對較差。在單位粉體重的SSPD所分散的可呼吸性微粒的質量濃度的排序仍是以奈米二氧化鈦最高,而奈米黏土與奈米二氧化矽為最小。奈米粉體隨著顯在密度的增加而分散後的奈米微粒質量會減少,因奈米二氧化矽(HDK, N20)顯在密度最低,其分散後的單位粉體重的奈米微粒質量濃度高於奈米二氧化鈦及其他奈米粉體。

英文摘要:
Referring to many domestic and foreign literatures, this project has completed a draft manual for exposure control of nanoparticles in nanotechnology laboratory. The manual is divided to seven chapters, including brief introduction, risk assessment of nanomaterials ES&H and management of workers, exposure assessment of nanomaterials, exposure control of nanomaterials, fire and explosion prevention, waste management of nanomaterials and accidental release management of nano-materials. The draft manual is pending for expert review and approval. Sor far, there is no appropriate exposure assessment and control in all nanotechnology laboratories and plants, since the assimilation and training of exposure control manual has not been executed. In the future, it is suggested to promote the education traning and use of the manual for exposure control of nanoparticles in nanotechnology laboratory.
This project has conducted particle measurement in two nano-material associated laboratories and five workplaces, repectively. Among the two laboratories, particle concentration outside of the experimental chamber was found to be low, since the amount of nanomaterials used was small and the particle control system such as Hood and negative pressure chamber was well implemented. The nanoparticle mass concentration in the laboratories was nearly the same as the background value.
However, nanoparticle mass concentration in the shipbuilding palnt was highest (maximum value was 33.7 μg/m3), followed by the synthetic rubber plant (maximum value was 12.3μg/m3), and the epoxy molding compound plant and calcium carbonate plant had the lowest concentration, the maximum value of which was 3.82μg/m3 and 1.85μg/m3, respectively. Particle mass in all plants was mostly in respirable size range instead of nano-sized range. The epoxy molding compound plant had highest respirable particle mass concentration, followed by the shipbuilding plant, synthetic rubber plant and calcium carbonate powder plant had the lowest concentration. Powder dustiness test found that mass median aerodynamic diameter (MMAD) of all nano-powders belonged to micronmeter range after it was dispersed by a small scale powder disperser (SSPD). The most particle mass concentration fell in the respirable fraction; the nanosize fraction was very low. Among five tested powders (nanao-titanium dioxide, nano-zinc oxide, nano-aluminum oxide, carbon soot and iv nano-clay), nano-titanium dioxide had the smallest MMAD (1105 nm), the next was nano-zinc oxide (1344 nm), nanao-aluminum oxide (1322 nm), carbon soot (1329 nm) and nano-clay (3179 nm). Number concentration of the dispersed particles was ranked based on unit powder weight as nanao-titanium dioxide > nano-zinc oxide > nano-aluminum oxide>carbon soot>nano-silicon dioxide (HDK, N20)>nano-clay >nano-silica dioxide (Degussa) in the size range of the aerodynamic particle size (APS). In the size range of the scanning mobility particle sizer (SMPS), the ranking was nano-aluminum oxide> nanao-titanium dioxide>carbon soot>nano-silicon dioxide (HDK, N20)>nano-zinc oxide>nano-silicon dioxide(Degussa) nano-clay. Comparing all tested powders, nano-titanium dioxide and nano-zinc oxide had the best dispersivity while nano-clay has the worst dispersity. In addition, the ranking of respirable particle mass concentration per unit dispersed powder weight was nano-titanium dioxide (highest), nano-clay, nano-silicon dioxide (HDK, N20) (lowest). In general, the dispersed nano-particle mass concentration of powders decreased with increasing powder apparent density. Since nano-silicon dioxide (HDK, N20) has the smallest apparent density, the nano-particle mass concentration per unit powder weight is higher than nano-titanium dioxide and other powers.
計畫報告連結:
資料庫分類: 勞安所、處理、環境暴露及控制、職業暴露評估、職業暴露控制、最佳控制實務與風險管理、火災與爆炸、個人防護器具、體外實驗、風險認知與溝通、風險評估方法、風險管理、吸入、金屬、多重奈米物質、氧化物、報告、工業/研究作業員、技術研究者、一般民眾、公共政策、工程/人造、工作場所
下載檔案:
文章分享到
分享文章 到 facebook 分享文章 到 Plurk 分享文章 到 to Twitter

 

網頁更新日期:2016/06/15